Occupancy of the Chromophore Binding Site of Opsin Activates Visual Transduction in Rod Photoreceptors
نویسندگان
چکیده
The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors.
منابع مشابه
Bleaching desensitization: background and current challenges
"Bleaching desensitization" in rod photoreceptors refers to the prolonged depression of phototransduction sensitivity exhibited by rods after their exposure to bright light, i.e., after photolysis (bleaching) of a substantial fraction of rhodopsin in the outer segments. Rod recovery from bleaching desensitization depends critically on operation of the retinoid visual cycle: in particular, on th...
متن کاملRod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.
Activation of the visual pigment by light in rod and cone photoreceptors initiates our visual perception. As a result, the signaling properties of visual pigments, consisting of a protein, opsin, and a chromophore, 11-cis-retinal, play a key role in shaping the light responses of photoreceptors. The combination of pharmacological, physiological, and genetic tools has been a powerful approach ad...
متن کاملDISCO! Dissociation of Cone Opsins: the Fast and Noisy Life of Cones Explained
Vertebrate retinas contain two types of photoreceptors. Rods are for vision in dim light, while cones provide high-speed color vision in bright light. In this issue of Neuron, Kefalov et al. present data to explain the reduced sensitivity and faster response kinetics of cones. They show that the chromophore dissociates from cone but not rod visual pigment, yielding apo-opsin. This apo-opsin act...
متن کاملRole of Noncovalent Binding of 11-cis-Retinal to Opsin in Dark Adaptation of Rod and Cone Photoreceptors
Regeneration of visual pigments of vertebrate rod and cone photoreceptors occurs by the initial noncovalent binding of 11-cis-retinal to opsin, followed by the formation of a covalent bond between the ligand and the protein. Here, we show that the noncovalent interaction between 11-cis-retinal and opsin affects the rate of dark adaptation. In rods, 11-cis-retinal produces a transient activation...
متن کاملPhotoaffinity Labeling of Bovine Rhodopsin
Photoaffinity labeled (3diazoacetoxy)-9-CC-retinal (1) and (9-methylenediazoacetoxy)9-c&retinal (2) were synthesized and bound to bovine opsin to obtain visual pigment analogs having absorption maxima at 465 and 460 nm respectively. Binding studies established that synthetic retinals 1 and 2 bind to the natural binding site and that the integrity of the diazoacetoxy photoaffinity label is prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 113 شماره
صفحات -
تاریخ انتشار 1999